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The l i t e r a tu re  data on the l iquid-phase  homolyt ic  i somer iza t ion ,  addition, substi tution,  and oxi-  
dation reac t ions  of 1 ,3-d ioxacyclanes  a r e  examined.  The p r o b l e m s  involved in the format ion ,  
s tab i l i t ies ,  kinet ics ,  and m e c h a n i s m s  of the t r ans fo rma t ions  of f r ee  rad ica l s  in a s e r i e s  of 
cycl ic  ace ta l s  a r e  d iscussed .  Poss ib i l i t i e s  fo r  the appl icat ion of the homolyt ic  t r ans fo rma t ions  
of 1 ,3-d ioxacyclanes  in organic  synthes is  a r e  demons t ra t ed .  

New a r e a s  fo r  the effect ive  appl icat ion of va r ious  1 ,3-d ioxacyclanes  as solvents ,  p l a s t i c i ze r s ,  and c o r r o -  
sion inhibi tors  and in the synthes is  of diene m o n o m e r s ,  biological ly act ive compounds,  medicinal  p repa ra t ions ,  
he rb ic ides ,  etc.  have been found in r ecen t  y e a r s .  The inc reased  in te res t  of r e s e a r c h e r s  in compounds Of this 
s e r i e s  is also connected with the i r  wide access ib i l i ty  f r o m  pe t rochemica l  products  (olefins, aldehydes,  and g ly-  
cols) ,  on the one hand, and the p r e s e n c e  of two he te roa toms  in the ring, on the other .  The la t t e r  is valuable  
f r o m  the point of view of the e s t ab l i shmen t  of the gene ra l  p r inc ip les  of the synthes is  and t r ans fo rma t ions  of 
sa tu ra ted  he te rocyc l ic  compounds.  

The p r o b l e m s  as soc ia t ed  with the f r e e - r a d i c a l  t r ans fo rma t ions  of 1 ,3-dioxacyclanes  in solution have been 
p r ac t i c a l l y  ignored in the publ ished rev iews  and monographs  [1-7] devoted to the c h e m i s t r y  and technology of 
cycl ic  ace ta l s .  The l a rge  amount  of new data on the r a t e s  and d i rec t ions  of homolytic  l iquid-phase  reac t ions  of 
cycl ic  ace ta l s  a r e  undoubtedly dese rv ing  of individual d iscuss ion.  

S t r u c t u r e s  a n d  R e a c t i v i t i e s  o f  F r e e  R a d i c a l s  F o r m e d  f r o m  1 , 3 - D i o x a c y c l a n e s  

The rad ica l s  gene ra t ed  in 1 ,3-dioxacyclane  media  by var ious  methods ( thermal  d issoc ia t ion  and photodis-  
socia t ion of perox ides ,  sens i t i zed  UV i r radia t ion,  redox sys tems)  spl i t  out hydrogen f r o m  the subs t r a t e  mo le -  
cules to give cycl ic  f r ee  rad ica l s .  

The fo rmat ion  of ni t roxyl  rad ica l s ,  which a r e  sufficiently s table  to be studied at room t e m p e r a t u r e  by 
means  of the i r  ESR spec t r a ,  f r o m  subst i tuted 1,3-dioxolanes  and their  he teroanalogs  was obse rved  in [8] by 
means  of a f r e e - r a d i c a l  accep to r  (2 -n i t roso-2-methy lp ropane)  in the benzophenone- ini t ia ted photochemical  r e -  
action and in the case  of the the rma l  decomposi t ion of d i - t e r t -bu ty l  peroxyoxala te .  Only splitting due to s p i n -  
spin coupling with the nuclei  of the n i t rogen  a toms was obse rved  in the spec t ra ,  in which the reduced a N value 
(13-14.5 G) as c o m p a r e d  with the values  fo r  dialkylni t roxyl  rad ica l s  (a N = 15.5-17 G) was due to the inductive 
effect  of the he te roa toms  adjacent  to the u - c a r b o n  a tom [9] (Table 1). The rad ica l  f o rmed  f r o m  2 -cyc lop ropy l -  
1 ,3-dioxolane probably  has a nonplanar  s t ruc tu re ,  and this d e c r e a s e s  the abili ty of the cyclopropyl  ring to un- 
dergo opening, as a r e s u l t  of which only the signal  of a ni t roxyl  rad ica l  containing an unsubsti tuted cyc lopro -  
pane f r a g m e n t  is p r e s e n t  in the ESR s p e c t r u m .  

The ESR s p e c t r a  of the rad ica l s  obtained by detachment  of a hydrogen a tom f r o m  the cor responding  1,3- 
dioxacycloalkane by the act ion of a hydroxyl r ad ica l  at  room t e m p e r a t u r e  [10] o r  by reac t ion  with the t e r t -  
butoxyl r ad ica l  genera ted  in the photolysis  of d i - t e r t -bu ty l  peroxide  (DTBP) [11] indicate that cycl ic  alkoxyalkyl  
and dialkoxyalkyl  r ad ica l s  a r e  f o rm ed  s imul taneous ly  [12] (Table 2). 

These data, in conjunction with the constants  of hyperf ine split t ing of the unpaired e lec t ron  on the 13C 
nuclei ,  made  it poss ib le  to conclude that the rad ica l s  have a nonplanar  s t ruc tu re .  

The deciding f ac to r s  in the degree  of nonplanari ty  of the t r iva len t  carbon a tom a re  local izat ion of the un- 
pa i r ed  e lec t ron  within the confines of a sma l l  ring with an inc rease  in the p c h a r a c t e r  of the carbon bonds and 
the p r e s e n c e  in the ~ posi t ion re la t ive  to the rad ica l  cen te r  of one o r  two a toms that p romote  an inc rease  in 
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T A B L E  1. N i t r o x y l  R a d i c a l s  F o r m e d  f r o m  C y c l i c  A c e t a l s  (DH) 
and T h e i r  H e t e r o a n a l o g s  a s  a R e s u l t  of D e t a c h m e n t  of a H y d r o -  
gen  A t o m  in the  P r e s e n c e  of 2 - N i t r o s o - - 2 - m e t h y l p r o p a n e  in 
B e n z e n e  [8] 

a N values ot a N values of 
the tert-bu- D' the textr bu- 
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T A B L E  2. P r o t o n  Spl i t t ing  C o n s t a n t s  and g F a c t o r s  
of  C y c l i c  R a d i c a l s  [12] 

H I1~6L 4 ,B9 H 0,019 

O ' " ~  - H 

0j019 
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} H 0 H 3,08 I __ ~ H  
CH3 H 2~32 0~12 

H o~5 

~:2,O030 . mq :2~0030 

T A B L E  3. K i n e t i c  P a r a m e t e r s  of the R e a r r a n g e m e n t  of C y c l i c  
D i a l k o x y a l k y l  R a d i c a l s  [15] 

Radical 

~"--  [C(CH3)2] 2 --30 
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the e lec t ron  density on the ca rbon  a tom via  a conjugation mechan ism;  in this case  the introduction of two oxy- 
gen a toms  gives  r i s e  to a much s t r onge r  effect  than the introduction of one oxygen atom. 

Deviat ion f r o m  p lanar i ty  in some  cycl ic  dialkoxyalkyl rad ica l s  was conf i rmed  in [13]. It follows f r o m  the 
ra t io  of the s t e ady - s t a t e  concent ra t ions  of the resul t ing rad ica l s  that de tachment  of a hydrogen a tom f r o m  the 
ca rbon  a tom adjacent  to the two he te roa toms  is p r e f e r r e d  o v e r  de tachment  f r o m  the o ther  s i tes  of the 1 ,3-di -  
oxacycloa lkane  molecule .  A s i m i l a r  conclusion was drawn as a r e su l t  of an analys is  of the quanti tat ive p r in -  
c iples  of the t he rm a l  decomposi t ion  of DTPB in cycl ic  ace ta ls  [14]. 

Signals of cycl ic  rad ica l s  and the cor responding  l inear  r ad ica l s  have been identified in the ESR sp ec t r a  
of 1 ,3-dioxolanes  and 1 ,3-dioxanes  containing two methyl  groups in the 4 and 5(6) posi t ions  [15]. 

. ,c  o. . , % / c . 3  
\ J - o '  c - o  
/ H k; / 

C--O H C--O 
.3r \CH 3 H3C / \ c .  3 

(OH) ( D" ) 

,/C H 3 

k__L___' C.2C/;'CH~ 

\CH3 (~) 
-I- E t A'~, 

s + E. k~.~ ,. Nonradical products 

The kinetic p a r a m e t e r s  of the p r o c e s s  (Table 3) have been de te rmined  in conformi ty  with the proposed  
mechan i sm.  Pe rk ins  and Rober t s  [15] have e x p r e s s e d  the assumpt ion  that over lapping of the 2p~ r orbi ta l  of the 
unpaired e lec t ron  with the G* orb i ta l  of the adjacent  oxygen a tom should be rea l i zed  during the monomolecu la r  
r e a r r a n g e m e n t .  This over lapping is max ima l  fo r  the conformat ion  in which the 2p~ orb i ta l s  and the C G - O  
and O - C y  bonds a r e  coplanar .  This so r t  of conformat ion  is achieved in acycl ic  dialkoxyalkyl rad ica l s ,  but the 
G* and 2p~ orb i ta l s  in the 1,3-dioxolanyl  rad ica l s  a r e  c lose  to orthogonal.  1,3-Dioxanyl rad ica l s  occupy an 
in te rmedia te  posi t ion,  and the r a t e  constants  for  the i r  r e a r r a n g e m e n t  a re  the re fo re  higher than those fo r  the 
f i v e - m e m b e r e d  analogs.  

It follows f r o m  a compar i son  of the energ ies  (calculated by the Hoffman method) of the m o s t  s table  con- 
fo rma t ions  of the cycl ic  1 ,3-dioxanyl  and i some t r i c  l inear  3 - fo rmylhydroxypropy l  rad ica l s  that the r e a r r a n g e -  
ment  is accompanied  by a cons iderab le  gain in energy  [16]. These calculat ions a re  in a g r e e m e n t  with the ex-  
pe r imen ta l l y  de te rmined  ra te  constants  fo r  monomolecu la r  r e a r r a n g e m e n t ,  which at 70-150~ exceed the ra te  
constant  fo r  chain t r a n s f e r  by two to three  o r d e r s  of magnitude.  

K i n e t i c s  a n d  M e c h a n i s m  o f  t h e  H o m o l y t i c  I s o m e r i z a t i o n  o f  1 , 3 - D i o x a c y c l o a l k a n e s  

In i t ia tors  of f r e e - r a d i c a l  reac t ions  (organic peroxides ,  p e r e s t e r s ,  and diazo compounds,  as well  as sens i -  
t ized UV irradiat ion)  cause  r e a r r a n g e m e n t  of cycl ic  ace ta ls  to i somer i c  e s t e r s .  S imi lar  t r ans fo rma t ion  of 
cycl ic  ace ta ls  of benzaldehyde has  been obse rved  in the liquid phase  (135~ in the p r e s e n c e  of DTBP [17]. 

o - - - - ,  initiator 
C6H5"- < (CH2) n C6H5COOCH2(CH2)n CH 3 

O--/ 
n=O~l 

Ult ravio le t  radia t ion sens i t i zed  by acetone,  acetophenone,  o r  benzophenone gives r i s e  to the s a m e  pro- 
c e s s e s  a t l o w e r  t e m p e r a t u r e s  (20~ the ra te  of i somer iza t ion  is cons iderably  lower in this case  [18, 19]. 

In the case  of 2 - p h e n y l - 4 - m e t h y l - l , 3 - d i o x a n e  the i somer i c  butyl benzoates ,  methyl  ethyl ketone, and 
benzaldehyde a re  s imul taneous ly  fo rm ed  [17]. 

" ~ " %Hs--COCC4H9 - n 

C6H5--< ~ ) O  ~.. [  I - C6H~"C�9 9- $eC 

CH3COC2HsCH 3 + C6H5CHO 

With r e s p e c t  to the i r  r e la t ive  r eac t iv i t i e s  in the case  of isome.rizat ion in the p r e s e n c e  of DTBP (10 
mole  %) at 130~ s i x - m e m b e r e d  cycl ic  ace ta l s  can be a r r anged  in the following o r d e r  [20, 21]: 2 - f u r y l - l , 3 -  
dioxane >-- 2 -pheny l - l , 3 -d i oxane  > 2 - m e t h y l - ! , 3 - d i o x a n e  > 2 - i s o p r o p y l - l , 3 - d i o x a n e  > 1,3-dioxane.  The resu l t s  
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TABLE 4. Kinetic P a r a m e t e r s  of the L iqu id-Phase  Radical  I s o m -  
/ -o  

e r i za t ion  of 1 ,3-Dioxaeyelanes  [23] ~.cH~. ~-, 

n R 

0 H 
O J.so-C3H-t 
0 C~HIa 
2 
! H 

k s / r  10~, ' [ E= Es --  

l i t e r s / m o l e .  [ J'/ZE4, 
sec t/~ (1_39" C_)J kca!/mole 

5,92 14 ,4•  
6,73 11 ,2 •  
8.53 ! I , 2 •  
2,58 12 ,1 •  
0,98 ! 3 6 •  

5,7 

�9 318 
4,4 

k3/4"~ ,  liters/raole �9 sec 1/2 

4,26.105 exp( - 14 400/RT) 
6~92.1O a exp ( -  11 200/RT) 
8,51-l03 exp(- ! 1 200/RT) 
6.92. l05 cap(- 12 IO0/RT) 
2.40. l04 exp(- 13 600/RT) 

TABLE 5. Kinetic P a r a m e t e r s  of the L iqu id-Phase  I somer iza t ion  
o -  k 

a - ~  (C~2} n of 4 -Me thy l - l , 3 -d ioxaeyc l anes  [25] ~ 

iso-QH7 

CHa 
iso " - ~31-17 

3.8 
610 
1,9 
1,8 

(kn/k iso___~)  
120 ~ i~r,: 

3 ,~ 
5.6 
1,8 
1,7 

150 ~ 

~ 9  

1.7 
1,,5 

AE = Eiso--E m 
kcal/mole 

2 . 2 •  
2 , 4 •  
1 ,3 •  
1 ,2 •  

indicate that g roups  that a r e  capable  of delocal izing the unpaired e lec t ron ,  thereby stabil iz  hag the in te rmedia te  
cycl ic  radical ,  i nc rease  the r a t e  of i somer iza t ion .  

A study of the kinetic p r inc ip les  of the DTBP- in i t i a t ed  l iquid-phase  t r ans fo rma t ions  of the 1 ,3-d ioxacy-  
clanes at  120-150~ showed [22] that the initial r a te  of fo rmat ion  of the e s t e r  depends l inear ly  on the s u b s t r a t e  
concent ra t ion  to the f i r s t  power  and on the ini t ia tor  concentra t ion  to the 0.5 power .  These r e su l t s  w e r e  found 
to be valid fo r  a l a rge  n u m b e r  of compounds and indicate a r ad ica l - cha in  unbranched mechan i sm with quadrat ic  
chain t e rmina t ion  by the r e a r r a n g e d  rad ica l s .  

kl 
(CH3)aCOOC(CH3) 3 ~ 2 (CH3) 3 CO" ( R" ) 

a ,4- 

D ~ 

H (DH) 

E 4- OH 

E" 4- E ~ 

- -  , _ RH 4- 
O > / O  

H (D')  

k2 ~ 
-- = He- O-CH2CH2CH; 

(E ' )  
~3 H\ 

~ o//COCIt2CH2CH 3 4- D" 

(EH) 

k4 ~ chain-termination products 

The e x p e r i m e n t a l l y  de te rmined  k a / ~ v a l u e  (Table 4) is a kinetic p a r a m e t e r  that c h a r a c t e r i z e s  the r e -  
ac t iv i t ies  of the cycl ic  ace ta l s  in l iquid-phase  hemolyt ic  i somer iza t ion  reac t ions  [23]. 

1,3-Dioxolane is apprec iab ly  m o r e  r eac t ive  than its seven-  and s i x - m e m b e r e d  analogs.  This is ex-  
plained by the fac t  that the change in the sp 3 hybridizat ion of the ring C (2) a tom to sp 2 that occu r s  during de-  
tachment  of a hydrogen a tom is l eas t  advantageous fo r  the s i x - m e m b e r e d  ring, whereas  l inear  E" rad ica l s  
with different  numbers  of methylene groups  differ  insubstant ial ly  with r e s p e c t  to the i r  r eac t iv i t i e s  both in 
cha in-propagat ion  and cha in - t e rmina t ion  reac t ions .  

It follows f r o m  [24] that the chief p roduc t  of chain t e rmina t ion  is a d ies te r .  This conf i rms  the dominant  
role  of d imer iza t ion  in p r o c e s s e s  involving quadrat ic  chain t e rmina t ion  by p r i m a r y  alkyl  rad ica ls .  

The fo rma t ion  of e s t e r s  that differ  with r e s p e c t  to the alcohol por t ion is c h a r a c t e r i s t i c  for  1 ,3 -d ioxacy-  
clanes that contain a subst i tuent  in the 4 posi t ion.  The r eason  fo r  this is the poss ibi l i ty  of compet i t ive  decom-  
posi t ion of the cycl ic  rad ica l  at two nonequivalent C - O  bonds.  Since l inear  alkyl r ad ica l s  whose p r o p e r t i e s  de-  
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t e rmine  the d i rec t ion  of the p r o c e s s  a r e  f o r m e d  in this s tep,  e s t e r s  with no rma l  s t r u c t u r e s  (Table 5) a r e  p r i -  
m a r i l y  fo rmed ,  s ince the i r  p r e c u r s o r s  a r e  the m o r e  s table  secondary  rad ica l s  [25]: 

o - /  I o - /  L-~ RCOOC.,-~CH,% 6.C%J-- RCOOCH,(CH,)oC% 

The r a t e s  of i somer i za t ion  of the s t e r e o i s o m e r i c  2 ,5-d isubs t i tu ted  1,3-dioxanes a r e  p rac t i ca l ly  identical,  
i .e.,  the g e o m e t r y  of the r ing 5 posi t ion does not affect  the homolyt ic  c leavage  of the C (2)-H bond [26]�9 

The rad ica l  i somer iza t ion  of pen tae ry th r i to l  d iaceta ls ,  in which 2 ,5 ,5 - t r i subs t i tu ted  1 ,3-dioxanes  a r e  
f o r m e d  in the f i r s t  s tep [27], may s e r v e  as a method fo r  the p r epa ra t i on  of 2 , 2 - d i m e t h y l - l , 3 - p r o p a n e d i o l  
dies te rs :  

o - ,  c .3  

o . - ,  , - o  . . . . .  

R = CH 3 ; C2H 5 ; C31-17 ; C6HI3 

RCOOCH2CCH2OCOR 

CH 3 

In the case  of pen tae ry th r i to l  d i formal  (R = H), 5 ,5 -d ime thy l - l , 3 -d ioxane  [28] is f o rmed  in addition to the 
expected 5 - m e t h y l - 5 - f o r m y t o x y m e t h y l - l , 3 - d i o x a n e  and 2 , 2 - d i m e t h y l - l , 3 - p r o p a n e d i o l  d i formate ,  evidently as a 
consequence of i n t r am o l ecu l a r  r e a r r a n g e m e n t  of monocycl ic  rad ica l  E ' :  

<o: co > .  , . , 

O --j ~--O H2C 
H\o--~ r -o  ~ (E:') 

H3C~O) + o .  . 2& ,--o 
H3C O H3C~'-2 --COz O=c/O-~H,E x--O 

In the case  of 2 ,2 ,4 - t r i subs t i tu t ed  1,3-dioxanes it was shown that under  the influence of rad ica l  in i t ia tors  
cycl ic  ke ta ls  undergo f ragmenta t ion  a t  the two C - O  ring bonds to give the cor responding  ketches [29]. In this 
case  the reac t ion  cen te r  is the a lky l - subs t i tu ted  ca rbon  a tom adjacent  to the he te roa tom.  

The kinetic p r inc ip les  of the r e a r r a n g e m e n t  have been studied in the case  of 2 , 4 - d i m e t h y l - 2 - b u t y l - l , 3 - d i -  
oxane.  The ra t e  of fo rma t ion  of methyl  ethyl ketone (WME K) depends l inear ly  on the concentra t ion of the s t a r t -  
ing keta l  and is ex t rapola ted  to the origin.  The ra t e  of fo rmat ion  of methyl  butyl ketone (WMB K) a lso  depends 
l inear ly  on the ketal  concent ra t ion  and cuts out a value equal to the r a t e  of initiation on the axis  of ord ina tes .  
L inea r  dependences of WME K on the ini t ia tor  concentra t ion  to the 0.5 power  and of WMB K/W~r~i on q ~ i  a r e  
sa t i s f ied .  These  r e su l t s  made it poss ib le  to a s s u m e  a r ad ica l - cha in  mechan i sm for  the reac t ion .  

(CH3)3COOC(CH3) 3 ~ 2 (CH3)3CO ~ 

-.{- (CH3)3 CO J,~ (CH3)3COH + o~/o o~o 
H3C C4H 9 H3C C4H 9 

(DH) (O ' )  

D" - ~ GH3C CH2C3H ? + CH 2 
O 

H3C C~H 9 (K")  

K ~ -F- DH k3 ~ CH3COCH2CH 3 Jr {3" 

�9 k4 2K - -  c.3coc.2c.2c.2c.2coc. 3 

Hence, WME K = k 3 A f k 4 �9 [DH] �9 V"-W i. 

The kinetic p a r a m e t e r  k3/~/k 4 (130~ = 0.64 �9 10 -3 ( l i t e r / m o l e  �9 sec)l/2 fo r  the fo rmat ion  of methyl  ethyl 
ketone f r o m  2 , 4 - d i m e t h y l - 2 - b u t y l - l , 3 - d i o x a n e  is cons iderab ly  lower  than for  2 -me thy l - l , 3 -d ioxane ;  this is due 
to the inc reased  s t reng th  of the C 0 ) - H  bond as compa red  with the C (2)-II  bond [29]. 

Like 1 ,3-d ioxacyclanes ,  l i nea r  cyclic  ace ta ls  - 2 -a lkoxyoxacyqlanes  - in the liquid phase  in the p r e s e n c e  
of rad ica l  in i t ia tors  a re  r e a r r a n g e d  to l inear  or  cycl ic  e s t e r s .  Thus methyl  va l e r a t e  is f o rmed  se lec t ive ly  
f r o m  2 -me thoxy t e t r ahyd ropy ran  in the p r e s e n c e  of DTBP (at 130~ [30]. As a r e su l t  of t r ans fo rma t ions  ini- 
t ia ted by sens i t i zed  UV i r rad ia t ion  (at 20~ the p redominan t  p r o c e s s  is the fo rmat ion  of 6 -va le ro lac tone  [31]. 
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]?he resu l t s  of a study of the effect  of the struqtt~re of 2 -a lkoxyte t rahydropyrans  on the ra te  and d i rec t ion  
of homolytic t ransformat ions  [32] make it possible  to draw a conclusion of fundamental significance:  the d i r ec -  
tion of cleavage of a cycl ic  dialkoxyalkyl radical  is de termined by the stabil i ty of the alkyl radica ls  formed.  
Thus substi tuents in the 6 posit ion de te rmine  the format ion  of a l inear  radical ,  whereas  a carbonyl  group in 
the fl position of the alkoxy substi tuent  de te rmines  the select ive  t ransformat ion  to a lactone. 

The following reac t ion  mechanism has been establ ished by kinetic studies [33]: 

(CH3)3COOCICH3) 3 . . . .  ~ 2 (CH,~):3 CO' 

(CH3)3CO" + ~ ~" (CH3)3COH + 
OR OR 

(AM) (A'} 

A" 

G 
,, C H2-(- C H ~-)~-3 C OOR 

El" (R') + AH 

E" (R') + R" (E") 

(E') 

O 
(LH) 

�9 ROOCC4H 9 (RH) 

(EH) 
. molecular products 

Hence, WEH~,~, .~f  �9 ~-~. [DH] �9 ]/'~i.. 

In the case  R = CH 3, k2a -~ k 2 >> k2b, and the scheme of the p rocess  is completely analogous to the scheme 
fo r  cycl ic  acetals .  When R = tert-C4H 9, k2b -~ k 2 >> k2a, and the scheme coincides with the mechanism of the 
t ransformat ion  of cycl ic  ketals  (see above). 

The react iv i ty  of 2 -n-pen ty loxyte t rahydropyran  is close to the react ivi ty  of 2 -methy l - l , 3 -d ioxane .  This 
makes it possible  to conclude that the fac tor  that de te rmines  the homolytic cleavage of p rec i se ly  the C (2)-H 
bond is the p re sence  of two oxygen atoms in the ~ position. 

R a d i c a l  A d d i t i o n  a n d  S u b s t i t u t i o n  R e a c t i o n s  o f  1 , 3 - D i o x a c y c l a n e s  

Cyclic alkoxy- and dialkoxyalkyl radica ls  fo rmed  f rom the corresponding 1,3-dioxacyclanes par t ic ipate  
in react ions  involving addition to the multiple bonds and in react ions  involving detachment  of a halogen atom. 

Mainly 2-alkyl  der ivat ives  (1 : 1 addition products) a re  fo rmed  in up to 50% yields in the photosensi t ized 
addition of 1,3-dioxolane and 1 ,3 ,5- t r ioxane [34, 35] to olefins with a terminal  double bond; 4 -a lky l - l , 3 -d ioxo-  
lanes a re  fo rmed  in considerably sma l l e r  amounts.  

! I hV~RRCO 
O~O 

R : C4H 9 ; C5Hll ; C6HI3 

- [ovoI R-CH=CH2 ~ [' J 
+ DH O-..l/O 

CH2CH2R 

[ ~---'l ] R-CH:CH2 F---,.-(C H2 CH:~R 
O v O  + DH " 0--.../"0 

When diethyl maleate  is used in place of unsaturated hydrocarbons in this react ion,  diethyl 1 ,3-d ioxan-2-yl -  
succinate is obtained in up to 90% yield.  A photoexcited molecule  of the sens i t i ze r  at tacks the subst ra te ,  c leav-  
ing the weakes t  C (2)-H or  C (4)--H bonds, and the corresponding cycl ic  radical  adds to the c a r b o n - c a r b o n  
double bond of the unsaturated compound. 

It has been demonst ra ted  that cycl ic  dialkoxyalkyl radicals  can also add to the carbonyl  group of a lde-  
hydes [36] and ketones [37] to give hydroxyalkyl der ivat ives .  

The addition of 1 ,3-d ioxacyclanes  to l inear  and cycl ic  unsubstituted compounds under the influence of 
DTBP or  benzoyl  peroxide  [38-41] at 90-160 ~ gives, in addition to alkylacetals ,  adducts with e s t e r  cha rac t e r :  
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/i)o  
o y o  

R 

initiator 
�9 " 0~0 , 

Lvoj L -,-o,. 
" '~ 'J 

RXc--CH 4r CH ) - - C H  
/ /  2 2n I 2 

O R ~-  H~C-- CH 2 n = 0 . 1 , 2  

The l a t t e r  a r e  f o r m e d  as a r e s u l t  of r e a r r a n g e m e n t  of the in te rmedia te  cycl ic  rad ica l  to a l inear  rad ica l  (see 
above); the ro le  played by this reac t ion  b e c o m e s  g r e a t e r  as  the t e m p e r a t u r e  r i s e s .  The ra t io  of the products  
of addition to the 2 and 4 ring posi t ions  also indicates (see a b o v e ) t h a t  the C(2) -H bond m o r e  eas i ly  (by a f ac to r  
of two to three) undergoes  homolyt ic  c leavage  than the C(4)--H bond. The fo rma t ion  (in up to 5% yields) of 
compounds with isoalkyl  subst i tuents  was obse rved  in all  c a se s .  

Cycl ic  ke ta ls  a r e  cons iderab ly  l ess  ac t ive  in addition reac t ions  than ace ta ls ,  and the fo rma t ion  of ap p re -  
c iable  amounts  of 2 ,2 ,4 - t r i subs t i tu t ed  1 ,3-d ioxacyclanes  is obse rved  only under  s e v e r e  conditions (150-160~ 
in this case  2 ,2 -d im e t hy l - l , 3 -d i oxo l ane  is twice as r eac t ive  as 2 ,2 -d ime thy l - l , 3 -d ioxane .  

The rad ica l  addition of 2 ,2 -d ime thy l - l , 3 -d ioxo l ane  and  2 , 2 -d ime thy l - l , 3 -d ioxane  to 1-hexyne (160~ 
ace t a l :  o l e f i n : D T B P  m o l a r  ra t io  = 10 :1  : 0.25, 4 h) may s e rve  as a method fo r  the p repa ra t ion  of 3 - o c t e n e - l , 2 -  
diols and 4 -nonene - l , 3 -d io l s ;  according to the NMR spec t ra ,  c i s -  and t r a n s - 4 - h e x e n y l - 2 , 2 - d i m e t h y l - l , 3 - d i -  
oxacyc lanes  a r e  f o r m e d  in approx ima te ly  equal amounts  [42]. 

H~C CN 3 H3C CH 3 

r(C,)oh "oXo c ~ §  oXo . 

H3C CH 3 

n = 0~1 

The homolyt ic  addition of 2 ,2-d isubs t i tu ted  4 -a lkoxymethy l - l , 3 -d ioxo lanes  to 1-nonene to give 2,2,4,4-  
t e t r a subs t i tu ted  1 ,3-dioxolanes ,  the y ie lds  of which were  not indicated, has been desc r ibed  [43]. 

When unsa tura ted  compounds with double bonds to which an e l e c t r o n - a c c e p t o r  group is a t tached (a ,f l -un-  
s a tu ra t ed  ketches  and e s t e r s  and n i t r i l es  of a , f l -unsa tu ra t ed  acids) a r e  used, the reac t ion  p roceeds  se lec t ive ly  
to f avor  the fo rma t ion  of 2 - subs t i tu ted  1 ,3-d ioxacyclanes ,  which in a number  of c a se s  a re  difficult  to obtain by 
o the r  methods [44, 45]. This indicates  the nucleophilic c h a r a c t e r  of the cycl ic  dialkoxyalkyl radical ,  the addi- 
tion of which takes  p lace  through a t rans i t ion  s tep with charge  separa t ion ,  as a consequence of which e l ec t ron -  
donor subst i tuents  a t tached to the double bond inc rease  the reac t ion  ra te .  

Examples  of homolyt ic  addition to the double bond of 2 - a l k e n y l - l , 3 - d i o x a c y c l a n e s  a r e  known [45-47]. The 
ace ta l  function does not have a subs tant ia l  ef fect  on the ra te  and d i rec t ion  of the react ion,  and the p r o c e s s  is 
s i m i l a r  in many r e s p e c t s  to the cor responding  reac t ions  of al lyl  e the rs .  

The homolyt ic  addition of 2 - a lkoxy te t r ahydropyrans  to olefins leads mainly  to 2 - a l k y l - 2 - a l k o x y t e t r a h y -  
d ropy rans  [30]. 

A spec ia l  case  of these  reac t ions ,  which is, however ,  of independent s ignif icance,  is the rad ica l  t e l o m e r i -  
zat ion of the widely acces s ib l e  lower  o~-olefins with cycl ic  ace ta ls .  Te lomer iza t ion  of ethylene with 2 - m e t h y l -  
1 ,3-dioxolanes  [48, 49] in the p r e s e n c e  of var ious  rad ica l -p roduc ing  subs tances  (50-150~ gave two s e r i e s  of 
t e l o m e r s  - 2 - m e t h y l - 2 - a l k y l - l , 3 - d i o x o l a n e s  (T a) and alkyl ace ta tes  (An). The ra t io  of the y ie lds  of the l inear  
and cycl ic  t e l o m e r s  i n c r e a s e s  as the t e m p e r a t u r e  r i s e s  and is independent of the ethylene concentrat ion.  

+ n C2H4 I I DH I I [ o o . ~ o.><.o 

F'---]initiato.. r - -  t.~ H3C (C2H4)n_I--CH,CH 2 H3C (C2H,)n--H 

o..~o J~ ~ J ^ H3C\ �9 § H3Cx 
H CH 3 L cH3j  I_..M__~.,. C - - O C H . C H . ~  COCH2CH2(C2H~)nH 

O// z '~ OH O ~ 

A n  

The p rac t i ca l  constancy of the pa r t i a l  constants  of chain t r a n s f e r  as the t e m p e r a t u r e  r i s e s  and the mo-  
l ecu l a r  m a s s e s  of the growing rad ica l s  i nc r ea se  (Cn = 0.2) indicates  approx imate ly  identical  act ivat ion ene r -  
g ies  fo r  the addition of the m o n o m e r s  and chain t r ans fe r ,  as  well  as that the dioxolane ring does not have a 
subs tant ia l  ef fect  on the reac t iv i ty  of the growing radical .  S imi lar  r esu l t s  we re  obtained in the t e lomer iza t ion  
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of ethylene with 2-e thy l - ,  2 - i sopropyl - ,  and 2-bu ty l - l ,3 -d ioxolanes .  An increase  in the f rac t ion of l inear  
t e lomer  homologs (An) was observed  in all cases  as the t empera tu re  rose .  Monomolecular  r e a r r an g emen t  of 
the growing radica l  with two ethylene links was noted in addition to chain t r ans fe r  and chain propagat ion in the 
te lomer iza t ion  of 1,3-dioxolanes [50, 51]. 

I I 
0 0 

H~/<CH: t  Q I I �9 " O.,~<,O 
H2C. . ~CH 2 C4H 9 

CH 2 

This leads to the appearance in the react ion mass of a new se r i e s  of t e lomer  homologs - 2 - b u t y l - 2 - a l k y l -  
1 ,3-dioxacyclanes.  The te lomer iza t ion  of ethylene by six-  and s ev en -m em b ered  cycl ic  acetals  p roceeds  in the 
same way as the te lomer iza t ion  of 2-subst i tu ted  1,3-dioxolanes.  However, the yield of l inear  t e lomer  homologs 
is appreciably higher  in the case  of dioxepane. The par t ia l  constants fo r  the investigated compounds range 
f rom 0o15 to 0.25; this cha r ac t e r i z e s  them as re la t ive ly  inefficient chain c a r r i e r s  whose reac t iv i t ies  a re  close 
to those of aliphatic carboxyl ic  acid es te r s .  

The cycl ic  radicals  fo rmed  by sensi t ized UV i r radia t ion  of 1 ,3-dioxacyclanes and the i r  heteroanalogs ac-  
t ively add to the o x y g e n - n i t r o g e n  double bond of 2 -n i t roso -2 -methy lp ropane  [8]: 

C,H 3 X-CH 2 Clio R X--CH 
CH~-CI - - N = O  + R--'C.. I I " I /  2 CHq--C--  N --C I * 

I 1 X'O H OH 3 O-CH 2 H3C O" -C 2 

X = O~S " 

The resul t ing ni troxyl  radica ls  were  identified f rom the p a r a m e t e r s  of thei r  ESR spect ra ,  and, as indicated 
above, this made it poss ible  to draw an unambiguous conclusion regarding the s t ruc tu re  of the in termediate  
radica ls .  

The 1,3-dioxacyclane radica l  fo rmed  as a resu l t  of homolytic cleavage of the weakest  C (2)--H bond is 
capable of detaching a halogen atom f rom a halogenating agent to give the ex t remely  unstable cycl ic  dialkoxy- 
alkyl halide [52], which evidently has the cha rac t e r  of a carbonium ion [53]. The rapid i somer iza t ion  of the 
l a t t e r  to the corresponding halogen-containing e s t e r  evidently proceeds  as in t ramolecula r  nucleophilic subst i -  
tution through attack of the X" anion on the ring C (4)[C(~)] atom. 

. > , . ~ RCCH:,(CH2)nCHzX 
(~..)<.: O O O O O. .O X- 

R >(  R "><'x 
n = 0 , 1 1 2  

Hence, it follows that the posit ion of the halogen atom in the e s t e r  molecule unambiguously indicates the site 
of cleavage of the C - O  bonds. 

In the react ion of chlorine,  bromine ,  o r  N-bromosuecin imide  (NBS) with t r ans - l , 4 ,5 ,8 -  te t raoxadecal in ,  
bis{2-haloethyl) oxalate was obtained as the pr incipal  product  instead of the expected cycl ic  mono- and dihalo 
der ivat ives  [54]: 

r" "v" " h ~  o r '~176 x 
+ . 

Lo-.L.o9 
2 - C h l o r o e t h y l  o r  2 -b romoethy l  fo rma te  is fo rmed  under the influence of the same reagents  f rom 1,3-dioxo- 
lane. The l iquid-phase chlorinat ion of 1,3-dioxanes with molecu la r  chlorine also leads to the corresponding 
chloro e s t e r s  [55]. 

In the reac t ion  of cycl ic  acetals  with NBS in carbon te t rachlor ide  the format ion  of chloro e s t e r s  along 
with bromo der ivat ives  is noted: this is explained by chain t r a n s f e r  to the solvent  [56]: 

. ~ ~ COl 4 ..... r--*1 . : - , _  RCOOCH2CH~,CI 

o o R~c, 

The yields of reaction products are determined by the ability of the substituent in the 2 posiGon to stabilize 

the unpaired electron in the cyclic radical; hence, it can be concluded that the rate--determinhn-g step is homol- 

ysis of the C (2) -- H bond. 
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As a r e su l t  of a study of the action of NBS in benzene solution at 50~ in the p r e s e n c e  of benzoyl peroxide 
on a n u m b e r  of ace ta l s  and keta ls  of ethylene glycol  and propylene  1 ,2-glycol  it was found that there  is p r a c -  
t ical ly  no involvement  of the O(~)-C (4) bond during ring opening and that the b romine  atom in the resul t ing 
e s t e r s  is a t tached to the p r i m a r y  ca rbon  a tom [57]. Only bromina t ion  of the alkyl groups  in the 2 posi t ion 
o c c u r s  in the case  of cycl ic  ace ta l s .  

It is in teres t ing  that the b romina t ion  of 4 -pheny l - l , 3 -d ioxane  with NBS takes p lace  s imul taneous ly  in the 
2 and 4 posi t ions,  as indicated by the s imul taneous  fo rma t ion  of b romo e s t e r s  and 4 - b r o m o - 4 - p h e n y l - l , 3 - d i -  
oxane [58]. 

The photochemica l  r eac t ions  of a n u m b e r  of f i v e - m e m b e r e d  cycl ic  ace ta l s  and the i r  he teroanalogs  in 
CFCI  3 in the p r e s e n c e  of benzophenone lead exclus ive ly  to the fo rma t ion  of the cor responding  ch lor ine-con ta in -  
ing acycl ic  e s t e r s  [8]. The photolysis  of opt ical ly  act ive  2 - p h e n y l - 4 - m e t h y l - l , 3 - d i o x o l a n e  g ives  2 - a c e t o x y - 1 -  
c h l o r o - l - p h e n y l e t h a n e  with comple te  invers ion  of configuration.  This is convincing proof  that a reac t ion  via  
an SN2 m e c h a n i s m  takes  p lace  at  the C (4) a tom: 

H CO._~C~t'% "%H5 
h~ CH --C O - ' ~ H  CFC'3 

j \  H , \0 _.I(H H3C O'J~ H [C5H5)2CO 

2 RS, 4 R = (--) 
g3.,. ,~ ~c~ "~ C'- .~ " CHrC~,+ I. H 

~- C ' -  ,C6H ~ O--'~H 
/ o % .  "I 

L " ~ 
\ '  \ L," 
o -~<,~----.c _ 

"J  

C6H~ 

//O HEEl 
 --CHr( I 

O - - E l l  z 

S = ( + )  

C6H5 
O--CH 

- CHCE~O I , 
CH2C 

R=(--~ 

Whereas  a phenyl group in the 4 posi t ion is r ep laced  by a CH~ o r  CHzC1 group,  the chlor ide ion a t tacks  the 
l e a s t  subst i tu ted  ca rbon  a tom in the in te rmedia te  ca rboa ium ion; as a resul t ,  only p r i m a r y  chloro e s t e r s  a re  
f o r m e d  [8]. 

When t e t r a - ,  t r i - ,  and d ich loromethanes ,  the s t rengths  of the C - C I  bonds in which range  f r o m  70 to 80 
k c a l / m o l e  [59], a r e  used as the halogenating agents and the reac t ion  is initiated by DTBP (at 120-150~ the 
r a t e  of r e a r r a n g e m e n t  of the cycl ic  rad ica l  and the r a t e  of de tachment  of a chlor ine  a tom by it turn out to be 
close;  this leads to the s imul taneous  fo rmat ion  of e s t e r s  and chloro e s t e r s ,  during which the l a t t e r  a re  f o rmed  
v ia  pa ra l l e l  ionic SN2 and rad ica l  m e c h a n i s m s .  

CC,. i- (~)..] $N2 " 
- _ ~ I~COOCH~ (CH2)n CH2Ct 

I I ] - O O �9 

r %  o 

RCOOCHI(CHz)nCH2CI 
+ O H  RCOOCH;t(C H2)n CH3 

L i q u i d - P h a s e  I n i t i a t e d  O x i d a t i o n  o f  1 , 3 - D i o x a c y c l a n e s  

The f r e e - r a d i c a l - d o n o r - i n i t i a t e d  l iquid-phase  oxidation of 1 ,3-dioxacyclanes  with mo lecu l a r  oxygen leads 
to hydroperoxide  and peroxide  der iva t ives .  This reac t ion  has s e rved  as the bas i s  fo r  a method fo r  the p r e p a r a -  
tive synthes is  of 2 - h y d r o p e r o x y - l , 3 - d i o x o l a n e s ,  the concentra t ion of which in the subs t r a t e  undergoing oxidation 
r eaches  80% [61]. 

The cor responding  ethylene glycol e s t e r s  a r e  f o rmed  in m o r e  profound oxidation s teps  as a r e su l t  of de-  
composi t ion  of the hydroperoxides :  

I I . ~ . RCOOCH2CH2 O" _ D H ;  RCOOCH2CH2OH O O O 

The oxidation and i somer i za t ion  reac t ions  p roceed  s imul taneous ly  [621, and the rat io  of the e s t e r  and hy- 
d roperox ide  depends on the conditions and the oxygen concentrat ion:  
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TABLE 6. Pa r t i a l  Values 
of the Relat ive Rate Con- 
s tan t s  fo r  Oxidation of the 
Corresponding  C - H  Bonds 
of 1 ,3-Dioxacyclanes  

Type of bond 

- -  OxH 
--O H 

--O H 
-- O'~C$H5 
-o. CH. 
__ 02qH = 

k,/4"~. 10 3, 
(liters/mole �9 
sec)l r~ 

1,93 

1,54 

7,20 

3.90 

I I %<o 
R H 

](Ar +O 2 ) 

0 (9 I,( L.\ 

The o c c u r r e n c e  of a n u m b e r  of new t r ans fo rma t ions  that accompany l iquid-phase  oxidation was es tab l i shed  in 
the case  of cycl ic  ace ta l s  containing an ~ - h a l o m e t h y l  group in the 2 posit ion [63]. In the opinion of Seyfarth 
[63], the fo rma t ion  of ~ -b romoe thy l  monobromoace ta t e  f r o m  2 -d ib romome thy l - l , 3 -d ioxo l ane  p roceeds  through 
a s tep involving the fo rma t ion  of a ketene aceta l .  

.-H" [ I I 02 ] j,_ r------i -PDH 
" o..~o O x O  - - - - -  o><o 

I } CH2BP BPHzC 00"] BPH2C OOH oxo 

. , o _ + . B r  = 
CHBr BrH2 c~'Br] 

The fo rma t ion  of sp i rocyc l i c  peroxides  has been  es tab l i shed  in the autoxidation of 2 -a lkeny i -  [64] and 2-  
f l -oxoalkyl-  1 ,3 'd ioxolanes  [65]: 

0~<.0 O..y~ 0 0 0 

~,H H~ OOH H~C," "9 
CH 2 CH 2 H2C~O 

CH~COCH2/~O--]" :H 0 -J O2')hV i. CH3COCH2HoO~O ]O~ _~ c % , , , ~ o - ~  
HO" "0--0" "O~ 

It has been found as a r e su l t  of a study of the init iated oxidation of a number  of cycl ic  ace ta l s  by kinetic 
methods that the l a t t e r  a r e  oxidized v ia  a f r e e - r a d i c a l  m e c h a n i s m  with quadrat ic  t e rmina t ion  by peroxide  r ad i -  
ca ls  [66, 67]. The p r i m a r y  s i te  of a t tack by the peroxy  rad ica l  (DO;-) in 1 ,3-d ioxacyc laaes  is the C(2)--H bond, 
espec ia l ly  when there  is an alkyl o r  pheayl  subst i tuent  p resen t ,  as well  as a subs t i tuen t -ac t iva ted  C ( 0 - H  bond 
(Table 6); the s t rength  of the c a r b o n - h y d r o g e n  bond undergoing c leavage ranges  f r o m  80 to 90 k c a l / m o l e .  

: The ra t e  constants  of the two reac t ions  -- homolyt ic  c leavage  of the C -  H bond by a pe roxy  rad ica l  and 
recombina t ion  of the DO; rad ica l s  [68, 69] - w e r e  de te rmined  sepa ra t e ly  by the in te rmi t ten t  i l lumination me th -  
od. The fact  that the r a t e  constant  fo r  c leavage  of the C(2) -H bond by a peroxy radica l  d e c r e a s e s  on pass ing  
f r o m  cycl ic  f o r m a l s  to cycl ic  ace ta l s  was explained by the s t e r i c  hindrance c rea ted  by the subst i tuent .  Addi- 
tional act ivat ion of this bond by an alkyl subst i tuent  is n o t s u b s t a n t i a l  in the case  of such a powerful  fac tor  as 
two ring oxygen a toms .  
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The corresponding glycol monoes ters  a re  formed as a resul t  of the l iquid-phase oxidation of cycl ic  ace-  
tals with ozone, but the available data [70] indicate that the react ion does not proceed via a radical  mechanism.  
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